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ABSTRACT

This paper addresses issues relevant to
implementing security for IP multicast
networks.  These issues are of importance to
application developers wishing to implement
security services for their multicast applications.
The paper investigates the steps required to
create a secure multicast session including issues
of group membership and key distribution.  A
common simple criteria is established that can
be used to evaluate multicast keying
architectures.  The criteria focuses on the
efficiency and scalability of the keying solution.
Using this criteria, several keying architectures
are evaluated and compared to determine their
strengths and weaknesses.

INTRODUCTION

Multicast communications is an efficient means
of distributing data to a group of participants.
In contrast to unicast communications,
multicast routing permits a single IP datagram to
be routed to multiple hosts simultaneously.
Membership in a multicast group is dynamic,
allowing hosts to enter and leave the multicast
session without the permission or knowledge of
other hosts.  The inherent benefits of multicast
routing may also present some vulnerabilities
making it susceptible to attack unless they are
secured.  The goal is to secure these
vulnerabilities while maintaining the benefits of
multicast service.   

This paper presents issues relevant to securing
IP multicast communications.  An initial
overview of multicast technology is presented
followed by a general description of how security
services can be applied within the scope of
conventional multicast protocols.  In many
cases, cryptographic techniques such as
encryption may be used to provide some of
these security services.  In this paper, issues
related to the cryptographic keys supporting
these techniques are shown to be crucial to the
security of a multicast session.  Many multicast

security problems may be abstracted into a key
distribution and management problem.  

In order to secure a multicast session, a generic
outline for multicast session registration and key
distribution can be followed.  Using this outline
as a model, this paper establishes a set of criteria
useful in evaluating several recently proposed
multicast key distribution architectures.  Each
architecture focuses on methods designed to
efficiently distribute keys to a multicast group.
The techniques used to achieve this goal are
different in each example.

OVERVIEW OF MULTICAST SERVICE

IP multicast is the transmission of IP datagrams
to a host group [1].  A host group is a collection
of multicast capable hosts that either transmit
IP datagrams to or receive datagrams from a
particular Class D IP address.  Class D addresses
are reserved specifically for multicast
communications and can be dynamically
assigned among multicast groups.  Within the
multicast group, membership is also dynamic.
Hosts may enter and leave the group at will
without permission from other group members.
In a non-secure or public group, only knowledge
of the multicast address is required for
membership.  

Several protocols are necessary to route IP
datagrams to a multicast group.  Hosts identify
their desire to become part of a multicast group
to their local router using the Internet Group
Management Protocol (IGMP) messages defined
in [1].  In order to deliver multicast IP
datagrams to group members, routers may use
one of several routing protocols that define the
network routing topology [2, 3, 4, 24, 25].  The
MBONE is an example of a multicast network
overlaid on top of the traditionally unicast
Internet by using the Distance Vector Multicast
Routing Protocol (DVMRP) [2, 5].  Some
properties of these routing topologies may
prove beneficial in multicast key distribution
architectures.  For example, in [7], Ballardie



describes a key distribution architecture centered
around a core router defined for the Core Based
Tree (CBT) multicast routing protocol [4].

The scope of a multicast group can be limited by
restricting the routing of its IP datagrams.  By
manipulating the time-to-live  field in each IP
datagram [6], hosts can limit the scope of their
traffic by controlling the number of hops a
datagram travels before routers discard it.  By
restricting the time-to-live field of a datagram,
we create basic form of confidentiality for the
group by limiting the potential audience of the
data.  This may be considered at best a very
weak form of confidentiality that is difficult to
enforce.  Therefore, stronger mechanisms are
required if we want greater assurance.  

Multicast application layer data is typically
encapsulated by the transport layer UDP
protocol.  The combination of UDP and IP
protocols create an unreliable datagram service
without error correction capabilities.  Protocols
such as the Real-Time Transport (RTP)
protocol are designed to correct some of these
deficiencies [8].  RTP runs on top of UDP and
the underlying network protocol to provide end-
to-end network transport functions for multicast
audio and video conferences or sessions.  A
session is defined as the exchange of multimedia
data (e.g., an audio conference) within a
multicast group [9].  Several sessions may be
active within a single multicast group (e.g., one
for audio and another for video).  The type of
host participation in a multicast session can
further define the nature of the session.  In a
many-to-many type application, multiple group
members may receive and transmit data
simultaneously during the session.  In contrast, a
one-to-many  or push application typically has
only one transmitter and many receivers for the
session.  The type of application may influence
the design of a security architecture.  For
example, a one-to-many application is
inherently centralized and may benefit from a
security architecture centered around a single
trusted host.  Distributed many-to-many
applications may benefit from distributed
security architectures with multiple trusted hosts
performing registration and key distribution
functions.  

Multicast sessions may also be described in terms
of their membership.  In general, a session is

defined as either public or private.  Both types
are defined by the level of access control
required to join the multicast group [10].  Public
sessions are typically encountered on the
MBONE and are supported by the dynamic
nature of multicast communications (i.e.,
knowledge of the multicast address is the only
requirement for membership).  We can further
restrict public sessions by requiring users to
register and pass an authentication check in
order to participate.  In order to limit the scope
of a private multicast session, both registration
and authentication are required for participation
[10]. To limit the visibility of the secure
session, the session traffic is usually encrypted.
In this paper, we define a secure multicast
session as a private session with encryption.  

Multicast applications can benefit from the
addition of security services.  Commercial
applications that use public networks can limit
user access to services and control user
participation.  Without these security features,
user participation cannot be tightly controlled.
Access control mechanisms applied during
registration can limit participation to only
paying customers.  Military applications such as
command and control have obvious benefits
from the application of security.  By tightly
controlling access during registration, only users
with the proper credentials can join the session.
In both arenas, access control is the important
initial step in defining the multicast group.
Once the group is established, we can argue that
most of our security concerns can be abstracted
into a key management problem.

APPLYING SECURITY TO MULTICAST

Threats to IP multicast communications are
similar to those for unicast IP transmissions. In
general, threats include eavesdropping, the
unauthorized creation of data, the unauthorized
alteration of data,  the unauthorized destruction
of data, denial of service, and illegitimate use of
data [11].  In the case of multicast traffic,
because of the inherent broad scope of a
multicast session, the potential for attacks may
be greater than for unicast traffic.     

We can secure a system against these threats
through the application of several fundamental
security services (e.g., authentication, integrity,
confidentiality).  The security policy governing



the system determines how these security
services should be implemented in order to
counter the threats.  Implementation conflicts
may arise when overlapping security policies
cover a multicast group [12].  For example,
conflicting policies may arise between entities
separated by international boundaries.  In this
situation, the conflicting security policies might
dictate using different encryption algorithms and
key lengths.  For this reason, security protocols
used in multicast applications should be flexible
to support a variety of security mechanisms.
The IP security protocols defined for the
Internet in [13], including the  Encapsulating
Security Payload (ESP) [14] and the
Authentication Header (AH) [15], support this
philosophy.  These protocols are not restricted
to a specific cryptographic algorithm or other
security standard.

Fundamental Security Services

In order to counter the common threats to
multicast communications, we can apply several
of the fundamental security services, including
authentication, integrity, and confidentiality as
defined in [11].  

Authentication services provide assurance of a
host’s identity.  Authentication mechanisms can
be applied to several aspects of multicast
communications.  Foremost, authentication is
an essential part in providing access control to a
secure multicast group.  Applying authentication
mechanisms to the registration process ensures
that only authorized hosts are permitted to join
the secure group.  If the group employs
cryptographic techniques such as encryption for
security, then authentication measures may
restrict access to the keys used to secure the
group’s communications.  Group membership is
essentially defined by access to these keys.
Therefore, their availability must be restricted
to only authorized group members.

In order to identify the source of multicast
traffic, authentication mechanisms may also be
applied directly to each IP datagram.  This
application serves to further define group
membership by positively identifying each
member of the group.  Protocols such as AH
provide authentication for IP datagrams and
may be used for host authentication.
Authentication is also an essential part of any

key distribution protocol [16].  Because of the
sensitive nature of keying material,
authentication mechanisms can identify the
source of the key material and provide a means
to counter various masquerade and replay
attacks that may be launched against a key
distribution protocol.  

Only strong authentication mechanisms are
recommended for secure multicast applications.
Digital signatures schemes, such as the Digital
Signature Standard (DSS), are an examples of a
strong authentication mechanisms based on
public key technology [16].  In order to bind the
identity of a host to their public key, certificates
are formed that are digitally signed by a trusted
certificate authority (CA).  This process
provides the necessary assurance to enable the
proper identification of hosts during the
registration process.

Integrity services provide assurance that
multicast traffic is not altered during
transmission.  Integrity is not inherent to IP
datagram traffic and is usually reserved for
transport layer protocols (e.g., TCP).  The lack
of integrity services in IP can lead to spoofing
attacks [17].  Integrity can be applied indirectly
at the network layer with security protocols
such as ESP and AH.  In some applications
where corrupted data can easily be detected (e.g.,
voice applications), this service is not vital.
However, in other applications including key
management protocols, integrity services are
essential means of countering spoofing attacks.

Confidentiality services are essential in creating
a private multicast session.  Although
encryption is typically used to provide this
service, a weaker form of confidentiality may be
achieved by limiting the routing of session IP
datagrams.  Encryption can be applied at several
layers of the protocol stack while maintaining
the end-to-end service we desire.  Transport
protocols such as RTP support encryption
mechanisms within their protocol definition.  At
the network layer, ESP provides confidentiality
services for IP datagrams through encryption.
Confidentiality services should also be applied to
key management transactions during the
exchange of key material.  Key management
protocols,  such as the Internet Security
Association and Key Management Protocol
(ISAKMP) [16],   support confidentiality



services for key exchanges.  Confidentiality may
also be applied to session announcements
allowing them to be advertised publicly while
keeping the details of the session private.  

Figure 1 presents an example implementation
that summarizes some of these security
concepts.  In this example, each host creates a
public key pair (i.e., kx,kx

-1).  The private key of
the pair  (i.e., kx

-1) is kept secret by the host and
is used to sign messages and key material (i.e., if
the host performs key distribution functions).
This signature uniquely identifies the host to
other group members.  The public key of the
pair (e.g., kx) is signed by the CA and distributed
to other group members in the form of a
certificate (e.g., CA<X>).  Hosts can verify the
digital signatures of other group members using
the public key found in their certificate.  In this
example, host A has generated and distributed a
group key, KS,  to the multicast group.  After
hosts are authenticated by host A, the signed
group key is securely distributed to valid group
members (i.e., host B and C).  KS defines the
secure group.  Host D is not a valid member and
therefore is not issued a copy of KS.  To further
define group membership, multicast messages
encrypted in KS are signed by group members
using their private key.  Figure 1 shows the
message m encrypted by the group key KS and
signed by the transmitting host B (i.e., with kb

-1).
Using KS and CA<B>, group members A and C
can decrypt the message and verify its origin.  

Secure Group

Host A
• (ka , ka

-1), KS

• CA<B>,
  CA<C>

Host D
• (kd , kd

-1)

<{m}KS>kb
-1

Certificate
Authority

(CA)

Host B
• (kb , kb

-1), KS

• CA<A>,
  CA<C>

Host C
• (k c , kc

-1), KS

• CA<A>,
  CA<B>

Figure 1. Hosts within a Secure Group

Communicating Security Requirements

After the security services required for a
multicast session have been identified, it is
important to communicate the details of their
implementation to current and potential group
members.  This may include information about
the type of cryptographic algorithm, the length
of a crypto-period, key length, type of
authentication mechanisms used, and other
security related information describing the
implementation details of a particular secure
session.  In some unicast environments, these
parameters may be negotiated between hosts.
ISAKMP supports the negotiation of security
parameters between two hosts.  This feature
may be beneficial in situations of conflicting
security policies.  However, because of the
potentially large number of participants in a
multicast group, it is generally not efficient to
allow the negotiation of security parameters.
Therefore, session requirements are typically
defined by the initiator  of the session and
announced to potential participants.  The
initiator may record the security parameters for
a secure session in the form of a  security
association (SA) [13].  It is possible to have
multiple SAs within a secure group.  For
example, audio traffic may be encrypted under
one key and video under another key with each
session described by a separate SA.  When using
ESP, a security parameter index (SPI) within
each IP datagram identifies the SA required to
decrypt the traffic.  In all cases, the details of a
SA must be known by group members prior to
the start of a secure session.

The initiator of a session may distribute the SA
for a secure session prior to the session start
time using techniques similar to those used to
announce non-security parameters (e.g., session
start time, type of session protocol used).  Two
methods are typically used to announce a
session: advertisement and invitation.  

The initiator may advertise their desire to start
a session by using the Session Announcement
Protocol (SAP) [9].  The announcement may be
advertised to potential members by broadcasting
the announcement to a particular multicast
address reserved for receiving session
announcements.  Alternately, announcements
can be extended to a more selective group
through invitation protocols such as the Session



Initiation Protocol (SIP) [18] which directly
contacts potential participants.  Both SAP and
SIP use the Session Description Protocol (SDP)
[19] to describe the requirements for the
multicast session.  The defined requirements
may include both security and non-security
parameters.  These announcement techniques
offer an efficient means to distribute the SA and
other non-security conference information to
potential participants prior to the start of the
secure session.

Key Management Issues for Multicast

Through the use of encryption and digital
signatures, we can achieve desired levels of
confidentiality, integrity, and authentication.
Assuming that we use strong security
mechanisms that when implemented properly
cannot be broken by frivolous cryptanalytic
attacks, we can focus our security concerns on
protecting the key material.  We may generally
assume that our cryptographic algorithms
cannot be broken and thus, all security resides in
the key material.  Therefore, we focus our
security concerns around key management, key
distribution, and access control for key material.
With this in mind, a secure multicast session can
be defined by its Class D IP address and the
required keying material for the session.  

The size, type (e.g., asymmetric vs. symmetric),
and number of keys required to secure a
multicast session is determined by the
encryption mechanism employed and the keying
architecture.  In general, session participants
may use a common group traffic encryption key
(GTEK) to encrypt session data.  The initiator
of the session may use group key-encryption-
keys (GKEKs) to encrypt future session keys
(i.e., GTEKs) for distribution to group members.
For a private multicast sessions, access to these
keys must be restricted to maintain the security
of the overall session.  Therefore, during the
registration process it is necessary to require
strong authentication mechanisms to establish
the identity of potential participants prior to
distributing key material.  The specific access
control mechanism may be unique to the
application.  For example, identity based access
control mechanisms may be appropriate for
some commercial applications while military
models may use permission based schemes that
identify a participant’s clearance level.  When

these personal attributes are bound to a signed
certificate, the identify of a participant and
their assigned permissions may be verified by the
certificate’s digital signature and its relationship
in a certificate hierarchy [20].      

Depending on a system’s security policy and the
amount of traffic encrypted under a particular
key, it may be necessary to periodically issue a
new key or “rekey” a multicast session.  A rekey
may also be required in the event of a key
compromise.  In this case, it is necessary to
exclude the compromised site from future
communications.  Therefore, a rekey must be
targeted to specifically exclude the compromised
site while retaining the rest of the group
membership.  Depending on the security policy
in place, the definition of a compromise might
include the voluntary exit of a participant from
a secure session.  If this occurs, the entire group
may require a rekey in order to prevent the
excluded participant from rejoining the group at
a later time without re-registering for the
session. In addition, the keying architecture
should prevent collusion by a group of disbanded
members from generating or recreating the new
group key.   

THE SECURE MULTICAST PROCESS

As described in [12], a common process may be
applied to the establishment and maintenance of
a secure multicast session regardless of the
implementation details of the supporting keying
scheme.  Common functions may be derived
from the registration and authentication
processes required for private multicast sessions.
In the following example, we assume that
authentication services are based on a public key
certificate hierarchy.  A certificate authority
(CA) serves as a trusted and centralized
authority for participant identification.  All
participants have access to the CA for
verification of digital signatures.  The following
steps provide an overview of the initialization,
registration, and maintenance processes required
for secure multicast sessions:

1.  Someone identifies the need for a secure
session (i.e., the Initiator).  

2.  After the need for the secure session has been
established, the Initiator defines the parameters
required to participate in the session using a



description protocol such as SDP.  Parameters
include security related details that may be
defined in a security association (SA) as well as
other non-security related parameters (e.g.,
session start time, session address).

3.  Prior to the start of the secure session, the
Initiator determines whether assistance is
required to perform the participant registration
or key distribution functions.  The identity and
location of other trusted entities assisting in
these functions can be recorded in the session
description.  This allows participants to directly
contact the appropriate trusted entity at the
start of the session.  In some keying
architectures, such as the one described in [7] for
CBT multicast routing networks, keying and
registration functions are immediately passed off
to a trusted network “core”.  Other architectures
delegate responsibilities to outside trusted
entities only as needed [21].  In a truly
distributed keying architecture such as that
described in [10], delegation of registration and
key distribution functions to all active
participants is assumed.

4.  In order to enlist membership for the secure
session, the session description is announced to
potential participants.  The announcement may
come in the form of a posted advertisement or a
personal invitation to each group member.  The
Initiator may list invited participants in a
session access control list (ACL). The ACL
should be held by all authorized keying entities.
Updates to the ACL must be distributed among
these trusted entities.  Confidentiality may be
applied to session announcements in order to
conceal the existence of a secure session.  In
most cases, the Initiator may use multicast
techniques to efficiently announce the session to
all potential participants prior to its start.

5.  After receiving the session announcement,
potential participants may register for the
secure session if they can meet its requirements.
Registration is performed by the Initiator or
other trusted entity. As part of the registration
process, participant identities and their
permissions are authenticated.  Only valid
participants are extended the invitation to
become members of the secure group and are
issued the required keying material for the
session.  Keys exchanged during the registration
process must be provided the basic security

services.  Depending on the security policy
governing the session, it may be required to
provide a membership list of all registered
participants to the group.   After reviewing the
membership list, some participants may decide
to not participate further in the session.  In this
case, the security policy for the session may
dictate that participants delete the session key
when exiting the session.

6.  During the course of a secure session, it may
be necessary to perform several maintenance
operations including keying and registration
functions.  In order to support the dynamic
nature of multicast communications, it may be
required to add or delete participants after the
start of the session.  In some applications, the
percent of membership roll-over may be limited
throughout the lifetime of the session [12].
Participants added during an ongoing session
must complete the authenticated registration
process prior to receiving group key material.
Individual or groups of participants may be
dropped from the secure session either
cooperatively or non-cooperatively [21].  With
a cooperative exit from the session, the
participant voluntarily leaves the group and is
asked to erase all session key material.
Depending on the security policy governing the
session, the keys held by the participant may be
treated as compromised.  In the case of a key
compromise, a non-cooperative drop is required
to forcefully remove the compromised
participant from the secure session.  To remove
the participant, all potentially compromised
keys must be replaced by performing a rekey.
The rekey involves rekeying all affected
participants with a new session key (e.g., KS).

CRITERIA FOR SECURE MULTICAST

There are numerous issues to consider when
developing a secure multicast application.  [22]
provides a general overview of non-security
issues that developers should consider.  This
paper has focused on identifying security related
issues developers should consider when
implementing private multicast sessions.
Several of these issues relate to the key material
used to secure the multicast traffic.  Foremost,
the registration process provides a level of
access control for  key material.  For a private
session, all participants should be authenticated
during the registration process.  Upon successful



registration, key material and group membership
may be extended.  For a secure session, group
membership is defined by the session’s IP
multicast address and the key material required
to communicate securely with other group
members.

A complete solution to the multicast security
problem  addresses all relevant security issues
including session announcement, registration,
etc.  As mentioned previously, we may reduce
many of our security concerns to a key
management and distribution problem.  This
enables the efficient comparison and evaluation
of various solutions to the secure multicast
problem.  In order to make a fair comparison,
we define a limited set of criteria common to all
viable solutions.  The criteria helps to determine
the advantages and disadvantages of each keying
architecture by focusing on key distribution
efficiency and the overall scalability of the
architecture.  Other issues including participant
registration and authentication are not
considered but are equally important.

Criteria

Efficiency:    
Initial Keying

What is the efficiency of the
initial key distribution
exchange at the start of the
session ?

Efficiency:
Rekeying

What is the efficiency of
rekey operations (i.e., for
reasons of compromise or
crypto-period roll-over)?

Computation
Requirements

What level of computational
resources is required by the
key distributor and members
to process keying messages?

Storage
Requirements

What amount of storage is
required by participants for
key storage?

Scalability Is the solution scalable for
large and small groups (i.e.,
large > 100 members)?  

Table 1.  Criteria for Secure Multicast

Several solutions to the multicast key
distribution problem have been presented in
papers such as  [7, 10, 12, 21, 23].  The core
criteria used to evaluate several of these
proposed multicast keying architectures is shown
in table 1.  This criteria focuses on key
distribution efficiency, the ability to support
dynamic user entry and exit in an already
established secure session, computation
requirements placed on the system to perform
the keying operations, key storage requirements,
and scalability.    Efficiency is recorded in big-O
notation as a measure of the number of key
related messages transmitted per operation (e.g.,
rekey, initial keying).  The size of each message
is also considered.  However, it is assumed that
for some applications network throughput will
increase over time making the issue of size less
important.  Although efficiency is of primary
concern to networks with limited bandwidth, it
also provides a convenient measure of system
performance.   

KEY DISTRIBUTION ARCHITECTURES

In order to improve the efficiency of a keying
solution for secure multicast applications, it is
often beneficial to use features of multicast
communications that makes it an efficient form
of group communications.  The ideal key
distribution efficiency in a multicast
environment is O(1).  In such a scenario, a
centralized server may transmit only a single
keying message to the entire group to perform a
group rekey.  Every group member can extract
the required key material from this one message.
In contrast, the efficiency of using unicast
techniques to distribute a group key separately
to each group member is O(n).  Note, in most
cases it is more efficient to perform the initial
keying of participants in a unicast fashion during
the registration process.  The registration
function is inherently a one-to-one between a
single participant and the Initiator or other
trusted registration authority.  By coupling
registration with key distribution, the overall
number of transmissions required to perform
both functions can be reduced.   

Keying functions may be either centralized or
distributed throughout the architecture.  In a
centralized architecture, keying functions are
restricted to a single trusted authority.  In some
cases, this may be the Initiator of a session or



another entity assigned by the Initiator to
handle these vital functions.  For scalability
purposes, keying and registration functions may
be distributed to other trusted entities.
Applications that are of the type “one-to-
many” may benefit from a strictly centralized
architecture.  Alternatively, distributed
architectures may prove more scalable since
processing and storage requirements are
distributed across the network.

The following sections provide a brief analysis
of  several key distribution architectures [7, 10,
12, 21, 23].  Each section presents a brief
description of the architecture followed by an
analysis of its performance.  Performance is
measured against the criteria established in the
previous section.  We ignore issues of session
definition, announcement, and registration,
focusing instead on the key related criteria.

Manual Key Distribution

As noted in [12], manual key distribution
architectures are easily understood by users and
in many cases already in place (e.g., the
military).  In this type of architecture, all key
generation and distribution functions reside at a
central key distribution center (KDC).  Key
material requirements for a secure multicast
session must be determined by the Initiator well
enough in advance for the KDC to generate and
manually distribute the keys to all participants.
There is no computational load on individual
participants and storage requirements may be
limited to GTEK and GKEK storage.  

Because significant off-line coordination is
required with the KDC, this solution is not
scalable.  Also, it is generally slow to respond to
dynamic user entries and exits from the secure
multicast group.  Manual keying techniques are
also slow to respond to compromise.  In the
event of a group key compromise, new key
material must be distributed manually to valid
participants.  

Pairwise Keying

Several keying architectures have been designed
around the concept of pairwise keys [7, 12, 21].
With this type of architecture, the session
Initiator distributes the required key material for
the secure session.  The Initiator may also

perform registration and authentication
functions or pass them to another trusted entity.
Keying function may also be distributed among
trusted entities.  During the registration process,
the Initiator establishes and caches a unique
session key with each participant creating a
“pairwise” keying relationship between the
Initiator and participant.  These unique
participant session keys are used to encrypt
group keys for each authenticated participant.
The encrypted keys can be distributed to each
participant individually or multicast in a single
complete message containing all of the
individually encrypted keys.  

In [7], Ballardie proposed a pairwise multicast
key distribution solution based on the Core
Based Tree (CBT) multicast routing protocol.
In a CBT architecture, a routing tree is
centralized around a core router.  The core
router is centralized for the multicast group
making it a natural authorization and key
distribution point.  As other routers join the
tree, they may undergo an authentication
process with the core.  Through the addition of
other trusted routers to the tree, keying
functions may be distributed outside the core
router allowing the solution to scale to large
groups.  

In the CBT architecture, the Initiator of the
secure session creates an access control list
(ACL) and security association (SA) for the
session.  The ACL and SA are passed to the core
who then creates a GTEK and GKEK for the
session.  The core distributes the ACL, GTEK,
and GKEK to secondary routers as they are
authenticated and added to the tree. Ballardie
recommends using a keying protocol such as
ISAKMP to distribute keys between group
members and the trusted routers.  In a pairwise
fashion, ISAKMP enables the creation of a
unique session key between the two entities that
can be used to securely exchange the group key
material.  The computational requirements at
each end of this exchange are limited to the
creation of the unique session key.  

Because each participant must be keyed
individually, the efficiency of the initial keying
transmissions for the pairwise approach is  O(n).
Each participant must create a pairwise key
between with the Initiator prior to receiving the
group key material.  Several pairwise



architectures including Ballardie’s scheme and
the Group Key Management Protocol (GKMP)
described in [21] attempt to distribute keying
functions to other trusted entities.  Caching of
the unique participant session keys is not
required in these architectures;  however, their
presence makes the rekey operation much more
efficient.  Otherwise, in order to rekey the group
with a new group key requires essentially the
creation of another secure group that excludes
untrusted participants.  In [21], the use of a
GKEK can greatly improve the efficiency of a
rekey.  However, if the GKEK is compromised,
the efficiency reverts back to the efficiency of
creating a new group.  Therefore, like the initial
keying functions, the rekey function has an
efficiency of O(n).  

Hierarchical Trees

In [12], Wallner, et al propose a hierarchical
keying scheme that attempts to satisfy the
problem of rekeying to disenroll participants
from a secure group.  A hierarchical tree of key-
encryption-keys (KEKs) is created with the
GTEK used for the encryption of multicast
traffic residing at the root of the tree.
Participants become leaves of the tree with each
having their own unique KEK.  Each tier above a
participant corresponds to a different KEK.
Participants store all of the keys within the tree
in a path between the themselves and the root.
In the event of a compromise, the Initiator may
use the tiered KEKs to exclude a single
participant or groups of participants during a
rekey.  All compromised KEKs and the GTEK
are replaced during the rekey process.  

In the event of a compromise, the number of
transmission required to rekey the affected
participants in the tree is on the order of
O(logn).  The number of messages required to
rekey the tree is (k-1)d for a k-ary tree of
depth1 d.  Key storage requirements for each
participant is on the order of d+1 keys.  There
Initiator must store all keys in the tree.  

Efficiency in this scheme is achieved by using a
divide-and-conquer algorithm on the k-ary tree.

                                                

1 Rekey messages transmitted to each participant may
contain multiple keys.

While multiple messages may be required to
rekey the compromised section of the tree,
other less affect sections of the tree can be
rekeyed more efficiently with fewer and smaller
messages.  This feature makes the scheme
scalable towards large groups.  

In the hierarchical tree scheme, the keying
computational requirements are greatest at the
Initiator site.  During the initial keying of the
tree, the Initiator must generate a unique KEK
with each participant in the same fashion as the
pairwise approach (i.e., O(n)).   In addition, the
Initiator must also generate keys for all other
tiers of the tree.  During a rekey, the Initiator
must encrypt the new group key in the
appropriate sequence of KEKs corresponding to
the tree hierarchy.  

Secure Lock

The secure lock described by Chiou and Chen in
[23] utilizes the efficiency of multicast
communications to key and rekey session
participants.  Using the Chinese Remainder
Theorem (CRT), a secure lock is constructed
that is used to “lock” the deciphering group
session key. The single lock is transmitted with
each encrypted message.  Only users in the
secure group can “unlock” the session key.

The principle behind the secure lock lies in the
mathematics of the CRT.  The CRT states that
for N1, N2, ..., Nn positive, relatively prime
integers and R1, R2, ...,Rn positive integers, a set
of congruous equations

X= R1modN1   X= R2modN2    X= RNmodNN

have a common solution X in the range of [1,
L-1] where L=N1*N2*N3*...Nn and n is the
number of participants in the group [23].  Chiou
and Chen use the CRT properties to generate X
where Ri = Eeki(d) is the session key d encrypted
by the function E using participant ui’s public
enciphering key eki (part of a public key pair).
The common lock X is generated by the
Initiator using each participant’s public
enciphering key.  Each participant can recover
the locked session key d by applying the CRT.
The participant computes d using their secret
deciphering key dki.   Only participants whose



enciphering keys were included in the calculation
of X can unlock d.  

The secure lock method is flexible towards the
dynamic addition and deletion of group
participants.  Using the CRT, the Initiator can
generate the common X and rekey the group to
include or exclude certain participants from
future communications.  Only those participants
whose eki was used in the computation of X can
recover the session key.  Because X is common
among all valid participants, the efficiency of
the transmission of the lock is O(1).  Storage
requirements at each participant site is limited
to their public key pair.  In order for the
Initiator to create the lock, it must store the
public keys for each participant.

As noted in [23], computation time of the
common X using CRT is restrictive and may
only be efficient for small groups.  However, the
decipherment of d by each participant is fairly
efficient.  The overall efficiency of the
distribution of the secure lock (i.e., O(1)) may
be eclipsed by its computation time for large
groups.  Additionally, since the computation of
a common X is not distributable, the scheme is
inherently centralized.  Therefore, the secure
lock scheme does not scale well to large groups
unless a method for distributing the generation
of X can be defined.  

Distributed Registration and Key
Distribution (DiRK)

Distributed Registration and Key Distribution
(DiRK) [10] by Oppliger and Albanese is a key
distribution protocol designed for application
over the MBONE.  It distinguishes between
active and passive participants in a multicast
session.  In a truly distributed fashion, any active
participant may assist the Initiator with
registration and key distribution duties.

During the initialization phase, the Initiator
generates a session public key pair (ka, ka

-1).
The Initiator announces the session with a
signed copy of the public key ka.  The private
key ka

-1 is used by the Initiator to sign
subsequent messages.  The Initiator also
generates a group key for the session, KS.

After receiving the session announcement, hosts
may request to join the group by sending a

registration request message to the multicast
group (i.e., transmitted to the group’s Class D IP
address).  The request message contains the
public part of a public key pair created by the
participant for this session (i.e., kx).   Any
active participant already keyed with KS may
respond to valid users with the group key KS

encrypted in kx.  Timers and the use of the IP
time-to-live field can be used to restrict
responses to registration requests to only locally
active participants and thus prevent a flood of
messages from the group.  Only user X can
decrypt the group key encrypted in kx.  The
response also contains a certificate signed by the
responder that validates the returned key.   The
returned certificates form a hierarchical
participant registration tree (PRT) that can be
used to trace a certificate back to the Initiator.

DiRK includes a registration validation message
to keep participants up-to-date on the current
group membership.  Participants periodically
send validation messages to the group that
include a copy of the participants public session
key (i.e., kx) and the certificate they received
when they were registered for the session.

Several rekey options are supported by DiRK.  A
full session rekey can be performed by the
Initiator to rekey all participants with a new
key.  This rekey protocol simply encrypts the
new key in the previous session key.  In the
event of a compromise, a selective rekey can be
performed by the Initiator to rekey only
selective participants.  The Initiator uses the
public session keys received in the registration
validation messages to individually encrypt the
new session key for each valid participant.  A
single message is then sent to the group with the
individually encrypted keys.  Unique to DiRK is
a  distributed session rekey message that permits
active participants to rekey the group.  The
initial distributed session rekey message contains
a list of participants banned from participation.
This list is examined by active participants
before issuing the new group key to other
potential participants.  

The overall architecture of DiRK is very
efficient because of its distributed nature. The
processing required to key and rekey n
participants (i.e., O(n)) is distributed across the
network to all active participants.  Although the



selective keying function is O(1), this size of the
rekey message is the size of n.

DiRK is highly scalable because of its distributed
properties.  However, these same properties also
distribute the trusted registration and
authentication processes across the network.  In
order to validate messages, users must retain the
certificates for all local active participants.

SUMMARY OF KEYING ARCHITECTURES

Each of the solutions presented in [7, 10, 12,
21, 23] attempts to efficiently solve the
multicast key distribution problem in a slightly
different fashion.  It is important to note that
the best solution for one particular application
may not be well suited for another application.
For example, centralized applications such as
multicast video servers may benefit from a
centralized keying architecture while distributed
command and control applications may benefit
more from an equally distributed key distribution
scheme.  The following paragraphs summarize
the evaluation results from the previous section.  

Manual keying methods were determined to be
too slow for dynamic multicast sessions in which
membership is not defined prior to the start of
the session.  However, in some military
environments with a well structured manual key
distribution architecture already in place, this
solution may be the easiest to implement.    

Pairwise keying techniques typically provide
linear efficiency for initial keying and rekey
operations.  By consolidating all rekey messages
into a single multicast message, the efficiency of
the rekey can be dramatically improved.
However, this technique increases the overall
size of the rekey message to n.  Key storage
requirements for pairwise techniques are minimal
at participant sites but requires n keys to be
stored with the key distributor. This method is
scalable if keying and registration functions are
distributed to other trusted entities.  

The hierarchical trees method provides linear
initial keying performance and improved
logarithmic rekey performance.  The size2 of

                                                

2 For a k-ary tree of depth d.

any rekey message is no greater than (k-1)d.
Key storage requirements at each participant
site is d+1 keys while the Initiator must store all
KEKs and the GTEKs.  The solution is scalable
because of the logarithmic rekey performance.  

The secure lock method has linear initial keying
performance and an impressive constant rekey
performance.  The size of the rekey message is
also constant providing the best rekey
performance of all methods reviewed.  The
drawbacks of this method include the
computation time for the lock and the fact that
the technique is inherently centralized and may
not scale to large groups.  

In order to improve overall system efficiency,
DiRK distributes linear initial keying and rekey
functions among active group members.
However, a question of trust may arise because
the registration and key distribution functions
are distributed in such a broad fashion.
Otherwise, the solution is scalable to large
networks.  

CONCLUSION

Multicast sessions can be secured through the
application of several fundamental security
services.  A complete solution to the multicast
security problem addresses all aspects of the
application of these security services.  This
paper has shown that many of these security
concerns can be abstracted into a key
management problem.  The key material
required to communicate successfully and
securely within a session defines the secure
group.  Therefore, access to group key material
must be restricted and tightly controlled.  

By using a set of criteria focusing on key related
issues, this paper analyzed several different
keying solutions.  Because the best solution for
one particular application might not be well
suited for another application, it is important to
fully understand the requirements and security
policy of the application prior to applying a
security solution.  In general, it has been
observed that most keying solutions follow a
similar process for securing a multicast session.
In some cases, by combining the inherently
linear registration and initial keying functions
together into a single step, the overall efficiency
of the keying scheme can be improved.  



A security solution should compliment rather
than drive the implementation of a multicast
application.  The application of security should
be transparent to the user and work efficiently
with other required protocols.  Future work
should focus on achieving a truly integrated
security solution that functions together with
other non-security functions and existing
multicast protocols.

REFERENCES

[1] Host Extensions for IP Multicast, S.
Deering, RFC 1112, 1989.

[2] Distance Vector Multicast Routing
Protocol, S. Deering, C. Partridge, and
D. Waitzman, RFC- 1075, 1 November
1988.

[3] Multicast Extensions to OSPF, J. Moy,
RFC 1584, Proteon, Inc., March 1994.

[4] Core Based Trees (CBT) Multicast
Routing Architecture, A. Ballardie,
Internet-Draft, May 1997.

[5] Routing in the Internet, C. Huitema,
Prentice Hall, 1995.

[6] Internet Protocol, J. Postel, , RFC-791,
USC/Information Sciences Institute,
September 1981.

[7] Scalable Multicast Key Distribution, A.
Ballardie, RFC-1949, May 1996.

[8] RTP: A Transport Protocol for Real-
Time Applications, H. Schulzrinne et al,
RFC- 1889, January 1996.

[9] SAP: Session Announcement Protocol,
M. Handley, Internet-Draft, 19
November 1996.

[10] Distributed Registration and Key
Distribution (DiRK), R. Oppliger and A.
Albanese, Proceedings of the 12th
International Conference on
Information Security (IFIP SEC ‘96),
Island of Samos (Greece), May 21-24,
1996, Chapman & Hall, London, pp.
199-208.

[11] Computer Communications Security:
Principles, Standard Protocols and
Techniques, W. Ford, Prentice Hall,
1994.

[12] Key Management for Multicast: Issues
and Architecture, D. Wallner, E. Harder,
and R. Agee, Internet-Draft, draft-
wallner-key-arch-00.txt, 1 July 1997.

[13] Security Architecture for the Internet
Protocol, R. Atkinson, RFC-1825, Naval
Research Laboratory, August 1995.

[14] IP Encapsulating Security Payload
(ESP), R. Atkinson, RFC-1827, Naval
Research Laboratory, August 1995.

[15] IP Authentication Header, R. Atkinson,
RFC- 1826, Naval Research Laboratory,
August 1995.

[16] Internet Security Association and Key
Management Protocol (ISAKMP), D.
Maughan, M. Schertler, M. Schneider, J.
Turner, Internet-Draft, 21 February
1997.

[17] Security Problems in the TCP/IP
Protocol Suite, S. Bellovin, ACM
Computer Communications Review, Vol.
19, No. 2, March 1989.

[18] SIP: Session Initiation Protocol,
Handley, Schulzrinne, Schooler,
Internet-Draft, 31 July 1997.

[19] SDP: Session Description Protocol, M.
Handley and V. Jacobson, Internet-
Draft, 2 September 1997.

[20] Applied Cryptography, Second Edition:
Protocols, Algorithms and Source Code
in C, B. Schneier, John Wiley & Sons,
Inc., 1996.

[21] Group Key Management Protocol
(GKMP) Architecture, H. Harney and C.
Muckenhirn, RFC-2094, July 1997.

[22] Taxonomy of Communication
Requirements for Large-scale Multicast
Applications, R. Briscoe and P. Bagnall,
Internet-Draft, 29 July 1997.

[23] Secure Broadcasting Using the Secure
Lock, G.H. Chiou and W.T. Chen, IEEE
Transactions on Software Engineering,
v. SE-15, n. 8, August 1989, pp. 929-
934.

[24] Protocol Independent Multicast-Sparse
Mode (PIM-SM): Protocol Specification,
D. Estrin, et al, Internet-Draft, 15
March 1997.



[25] Protocol Independent Multicast Version
2: Dense Mode Specification, D. Estrin,
et al, Internet Draft, 2 April 1997.  


